

GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY

GCEP RESEARCH SYMPOSIUM 2014 | STANFORD, CA

Thomas F. Jaramillo

Associate Professor – Department of Chemical Engineering Stanford University GCEP Research Theme Leader – Electrochemical Energy Conversion and Storage Stanford University

GLOBAL CHALLENGES – GLOBAL SOLUTIONS – GLOBAL OPPORTUNITIES

The goal for today

To discuss unconventional, emerging technologies that could produce fuels in a renewable, sustainable manner.

Our definition of "Synthetic Fuels" for today's purpose.

Some previous GCEP Energy 101 Tutorials that are complementary to the material presented today:

- Solar Energy 101 Prof. Nathan Lewis
- Solar Cells 101 Prof. Michael McGehee
- Electrocatalysis 101 Prof. Thomas F. Jaramillo

Outline

- Fossil fuels
- Pathways to renewable, synthetic fuels
- Overview of thermodynamics & efficiency
- Electrochemical & Photo-electrochemical pathways
 - Hydrogen fuels
 - Lab-based devices
 - Techno-economics of large-scale facilities
 - Chemical & physical factors at play \rightarrow modeling efficiency
 - Extending to carbon-based fuels
- Summary

Total primary energy supply: The facts

World

World* total primary energy supply from 1971 to 2011 by fuel (Mtoe)

- Today: 17 TW of power.
- 80% comes from fossil fuels (oil, coal, natural gas).
- oil : coal : natural gas $\approx 1 : 1 : 1$.

*World includes international aviation and international marine bunkers. **Other includes geothermal, solar, wind, heat, etc.

International Energy Agency (IEA) "Key World Energy Statistics" (2013)

Fossil fuels: An amazing resource

- Consider petroleum/gasoline
 - Massive world-wide resource, extremely abundant
 - Provides ~ 5 TW of power across the globe (out of 17 TW total)
 - Huge energy density
 - Can drive a car 500 miles on one tank of gas, or fly a commercial jet half-way around the earth.
 - A full tank of gasoline in a car is approximately equivalent to:
 - The potential energy of 1 million gallons of water at 200 ft elevation
 - The electrical energy stored in 80,000 iPhone 6 batteries
 - High power density
 - Can power anything... automobiles, trucks, shipping vessels, commercial and military aircraft....
 - The power transfer in filling up your car at the pump is approximately 5 MW.
 - Yet very chemically stable
 - When you drive your car, do you worry about it exploding?
 - Easy to store and to transport
 - Approx. 100,000 miles of gasoline pipeline in the USA.
 - As a liquid fuel it can fit into any size and shape of container with ease.
 - Cost
 - How do the 'high' gas prices of today (~ \$3-\$4/gallon) compare with other consumer goods? Bottled water? Milk? Orange juice?
 - Convenience
 - Have you ever timed yourself at the gas pump? How long does it take to fill the tank?

No wonder why we consume so much petroleum! This is also why fossil fuels are so hard to beat....

Gasoline and related hydrocarbons

Petroleum Refining

- "Gasoline" (2002)
- "Secrets of Oil" (2008)

marketable products.

A "conventional" approach to synthetic fuels

GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY

Energy Density

The broad vision:

Renewable production of fuels and chemicals

Many possible schemes for solar fuels

(Photo-)Electrochemical Pathways

Scheme 1: Separate devices for electricity generation and for fuel production.

Scheme 2: One integrated device for solar harvesting and fuel production.

Thermodynamic considerations for (photo-)electrochemical conversions related to energy

Calculating STF Efficiency

Power Out	Rate of chemical energy production	$\sum_{i} \left(\frac{mA \ fuel_i}{cm^2} \right) (\Delta G_i \ V)$
Power In	Power input from solar energy	$(P_{total}\frac{mW}{cm^2})$

Example: Solar-to-hydrogen (STH) Efficiency

Outline

- Fossil fuels
- Pathways to renewable, synthetic fuels
- Overview of thermodynamics & efficiency
- Electrochemical & Photo-electrochemical pathways
 - Hydrogen fuels
 - Lab-based devices
 - Techno-economics of large-scale facilities
 - Chemical & physical factors at play \rightarrow modeling efficiency
 - Extending to carbon-based fuels
- Summary

GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY

Hydrogen (H₂)

Conventional H₂ production

GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY

State of Fuel Cell cars today (Oct 2014)

- Test fleets from many major automakers
 - > 3M mi. driven
 - > 27k refuelings
- Toyota FCV, first car to go on sale in 2015
 - MSRP ~\$65k

California Fuel Cell Partnership NREL

Noteworthy devices for Photoelectrochemical (PEC) H₂ production

AlGaAs/Si

GaAs/p-GaInP₂

Novel cell uses light to produce

3jn-CIGS

Technion Univ. Nagoya Inst. Hahn-Meitner Inst.

18.3 % STH

S. Licht et. al., Journal of Physical Chemistry B 104, 8920-8924 (2000)

NREL

12.4 % STH

Khaselev, O. & Turner, J. A. *Science* **280**, 425-427 (1998)

Uppsala University (Sweden)

10 % STH

T. J. Jacobsson, et. al., Energy Environ. Sci., 3676-3683 (2013).

GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY

Solar photoelectrochemical (PEC) H₂ production

Video courtesy of Dr. Todd Deutsch, NREL

GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY

Techno-economics

How much might H₂ cost if produced by large-scale solar PEC water-splitting?

How to conduct a techno-economic analysis

B.D. James, G.N. Baum, J. Perez, K.N. Baum, "Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production", DOE Report (2009) Contract # GS-10F-009J.

Chemical engineering plant design

B. Pinaud, J. Benck, L. Seitz, A. Forman, Z. Chen, T. Deutsch, B. James, K. Baum, G. Baum, S. Ardo, H. Wang, E. Miller & T.F. Jaramillo. *Energy Environ. Sci.* **2013**, 6, 1983-2002

GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY

Reactor Type 1: Colloidal Suspension

Reactor Type 2: Dual-bed Colloidal Suspension

Reactor Type 3: Fixed Panel PEC Array

Reactor Type 4: Tracking Concentrator Array

Technoeconomics of Photoelectrochemical H₂

Sensitivity Analysis: Efficiency is the cost-driver

B. Pinaud, J. Benck, L. Seitz, A. Forman, Z. Chen, T. Deutsch, B. James, K. Baum, G. Baum, S. Ardo, H. Wang, E. Miller & T.F. Jaramillo. *Energy Environ. Sci.* **2013**, 6, 1983-2002.

Band structure of a photoelectrode

Maximum STH efficiency vs. bandgap (single-absorber)

Z. Chen, T. F. Jaramillo, T.G. Deutsch, A.K. Schwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe C. Heske, M. K. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, & H. N. Dinh. *J. Mater. Res.* 25 (1), 2010

Modeling STH efficiencies

L.C. Seitz, Z. Chen, A.J. Forman, B.A. Pinaud, J.D. Benck, and T.F. Jaramillo, *ChemSusChem*, 7, 1372-1385 (2014).

GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY

Modeling 'Realistic' PEC efficiencies

Single-absorber devices

Calculated theoretical limits for a 'realistic' STH efficiency as a function of bandgap, taking into account:

Single-absorber devices

Calculated theoretical limits for a 'realistic' STH efficiency as a function of bandgap, taking into account:

- Reaction overpotentials (H_2 and O_2)
- Entropic losses ($V_{ph} < E_a$)

Multi-junction devices

Tandem devices

Multi-junction or Tandem Devices

Calculated theoretical limits for a 'realistic' STH efficiency as a function of bandgap, taking into account:

A vision of a solar fuels device

Three primary figures of merit for catalysts

Q: Which of these is most critically needed in catalyst development?

A: It depends on the reaction!

GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY

Summary of Electrocatalyst Development

- The hydrogen evolution reaction (HER)
 - Precious metals (e.g. Pt) reach all the important performance metrics.
 - Non-precious metals are not quite as active as Pt, but they might still be feasible.
 - Some are only stable in near-neutral or base (e.g. NiMo).
 - Some are only stable in acid (e.g. metal phosphides or sulfides, e.g. MoS₂).
 - Selectivity for H_2 is excellent for all of these catalysts.

• The oxygen evolution reaction (OER)

- Lots of room for improvement in activity, even for the best precious-metal based systems (e.g. IrO₂, RuO₂). Some non-precious-metal catalysts are as good or better, but only stable in near-neutral or alkaline conditions (e.g. FeNiO_x).
- Theory has explained why achieving desired activity is so challenging.
- Dimensionally stable anodes (DSAs) are extremely stable, proven in industrial electrolysis.
- Selectivity is generally only a concern for seawater electrolysis, where Cl₂ and Br₂ evolution are often favored over O₂ evolution.

• The CO₂ electro-reduction reaction to fuels and chemicals

- The most challenging of the three reactions, by far. There is a lack of viable candidate catalysts.
- Producing 2-electron products such as formate or CO is much easier than more reduced products such as hydrocarbons or alcohols.
- Copper produces an large fraction of hydrocarbons and alcohols, though selectivity is poor for any one product and high overpotentials are needed.
- Much work needed to make these processes feasible.

Benchmarking H₂ and O₂ catalysts at JCAP

C.C. L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, and T.F. Jaramillo (submitted, **2014**) C.C.L. McCrory, S. Jung, J.C. Peters, and T.F. Jaramillo, *Journal of the American Chemical Society*, **135**, 16977-16987 (2013).

Benchmarking H₂ and O₂ catalysts at JCAP

C.C. L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, and T.F. Jaramillo (submitted, **2014**)

Thermodynamics & Kinetics of CO₂ reduction

Y. Hori, "Electrochemical CO ₂ reductio within <i>Modern Aspects of Electrochen</i>	n on metal electrodes" nistry, Number 42, Edited by		
C. Vayenas et. al., Springer, New York, 2008.		E ⁰ vs. RHE	
2H⁺ + 2e⁻	$\leftrightarrow H_2$	0.00 V	
CO ₂ + 2H ⁺ + 2e ⁻	←→ CO + H_2O	- 0.11 V	All values are close to the H ₂ evolution potential (0.00 V).
CO ₂ + 8H ⁺ + 8e ⁻	$\leftarrow \rightarrow CH_4 + 2H_2O$	+ 0.16 V	
2CO ₂ + 12H ⁺ + 12e ⁻	$\leftarrow \rightarrow C_2H_4 + 4H_2O$	+ 0.07 V	
2CO ₂ + 12H ⁺ + 12e ⁻	$\leftarrow \rightarrow C_2H_5OH + 3H_2O$	+ 0.08 V	
3CO ₂ + 18H ⁺ + 18e ⁻	$\leftarrow \rightarrow C_3H_7OH + 5H_2O$	+ 0.09 V	

Synthetic Fuels: Take-home messages

- Chemical fuels are a magnificent form of energy storage.
- Researchers in the area of solar fuels aim to develop a way to produce fossil fuel-like molecules from water, CO₂, and solar energy.
- Technologically, this can already be done. However, better catalysts and semiconductors need to be developed if the process is to ever become cost-competitive with fossil fuels.
- A techno-economic analysis for the case of H₂ shows that it is possible to reach that goal if materials with appropriate properties can be developed.
- This is incentive to strengthen our efforts in R&D in this field, keeping our eyes on commercial possibilities as improved materials are developed.

